metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A nitronyl nitroxide complex of nickel(II) with nitrate as a ligand

Takafumi Yoshida, Takayoshi Suzuki* and Sumio Kaizaki

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

Correspondence e-mail: suzuki@chem.sci.osaka-u.ac.jp

Received 11 July 2001 Accepted 17 August 2001

The complex cation in [4,5-dihydro-4,4,5,5-tetramethyl-2-(2pyridyl- κN)imidazol-1-oxyl 3-oxide- κO^3](nitrato- $\kappa^2 O, O'$)-(N,N,N',N'-tetramethyl-1,2-ethanediamine- $\kappa^2 N,N'$)nickel(II) hexafluorophosphate dichloromethane solvate, [Ni(NO₃)-(C₆H₁₆N₂)(C₁₂H₁₆N₃O₂)]PF₆·CH₂Cl₂, is the first example of a nitronyl nitroxide complex of a transition metal ion having *d* electrons in which nitrate is coordinated as a bidentate ligand. Owing to the smaller steric requirement of NO₃⁻, the Ni–O(nitroxide) bond length [2.014 (2) Å] is remarkably shorter than that in the corresponding β -diketonate complexes [2.052 (4)–2.056 (2) Å].

Comment

During the last two decades, there has been a large number of investigations of the magneto/structural chemistry of transition metal complexes bearing nitronyl nitroxide radicals. Initially, most of the complexes contained 1,1,1,5,5,5-hexafluoropentane-2,4-dionate (hfac) or a halide as a ligand because of the weak Lewis basicity of the nitroxide-O donor (Caneschi et al., 1991). However, other types of nitronyl nitroxide complexes have recently been reported, such as those in which nitroxides are bound to carboxylate-bridged dinuclear metal centres (Handa et al., 1998; Conge et al., 1994) and those having oxalate (Oshio et al., 2000) or cis-1,2-dicyano-1,2-ethylenedithiolate (Sutter et al., 1996) as a ligand. The N-heteroaromatic derivatives of nitronyl nitroxides have also been used advantageously to construct various types of transition metal-nitroxide complexes, because the auxiliary N-heteroaromatic donor group can make the nitroxide-O atom bind to a poorly electrophilic metal centre through the chelate effect (Luneau et al., 1993). Such nitronyl nitroxides also opened up the syntheses of transition metal complexes having various kinds of co-ligands. In fact, using the 2-pyridyl derivative 4,5-dihydro-4,4,5,5-tetramethyl-2-(2-pyridyl)imidazol-1-oxyl 3-oxide (NIT2py), we have recently succeeded in preparing and characterizing novel Ni^{II}-nitronyl nitroxide complexes containing both N, N, N', N'-tetramethyl-1,2-ethanediamine (tmen) and various kinds of β -diketonate

ligands (Yoshida *et al.*, 1999). We report here another intriguing Ni^{II}-nitronyl nitroxide complex containing nitrate instead of β -diketonate, *i.e.* [Ni(NO₃)(tmen)(NIT2py)]-PF₆·CH₂Cl₂, (I). This is the first nitronyl nitroxide complex of the late transition metal ions containing nitrate as a ligand, although there has been a recent report concerning lanthanide(III)-nitronyl nitroxide complexes having three nitrate ligands, *viz*. [Ln(NO₃)₃(NITtrz)₂] (Ln = Y, La or Gd; NITtrz = 4,5-dihydro-4,4,5,5-tetramethyl-2-(4,5-dimethyl-1,2,4-triazol-3-yl)imidazol-1-oxyl 3-oxide) (Sutter *et al.*, 1998).

Compound (I) was prepared from [Ni(NO₃)₂(tmen)], NIT2py and KPF₆, and was recrystallized from CH₂Cl₂/Et₂O, affording dark-green crystals. The X-ray analysis confirmed that the nitrate acts as a bidentate ligand in the complex cation of (I) (Fig. 1). The nitronyl nitroxide, NIT2py, coordinates to the Ni^{II} ion via the pyridyl-N and nitroxide-O atoms to form a six-membered chelate ring. As in the other Ni^{II}-NIT2py complexes (Luneau et al., 1993; Yoshida et al., 1999), the coordinated N-O bond [N1-O1 = 1.296 (3) Å] is longer by ca 0.02 Å than the uncoordinated N–O bond [N2–O2 = 1.276 (4) Å]. The diamine, tmen, also chelates to Ni^{II}, forming a five-membered chelate ring with a typical gauche conformation, and the coordination geometry around the Ni^{II} atom is a distorted octahedron. The geometrical structure of the complex cation is assigned as a mer (cis, trans) N₃O₃ configuration, similar to the corresponding pentane-2,4-dionate (acac), 1-phenylbutane-1,3-dionate (bzac) and 1,1,1-trifluoro-4-phenylbutane-2,4-dionate (tfbzac) complexes, i.e. [Ni(acac/ bzac/tfbzac)(tmen)(NIT2py)]PF₆ (Yoshida et al., 1999). Also, the conformations of the NIT2py and tmen chelate rings in (I) are similar to those in the above-mentioned β -diketonate complexes; for the complex cation having a A absolute configuration around the Ni^{II} centre, $\delta(\text{lel})$ and $\lambda(\text{ob})$ conformations are observed for NIT2py and tmen, respectively.

The structure of the coordinated nitrate moiety is not anomalous, although the Ni–O3 and Ni–O4 bond lengths [2.129 (2) and 2.125 (2) Å, respectively] are slightly shorter than those in the related Ni^{II}–NO₃ complexes; for example, in [Ni(NO₃)(acac)(1,2-dipiperidinoethane)] [2.168 (3) and 2.161 (3) Å; Fukuda *et al.*, 1989] and [Ni(NO₃)(*N,N'*-dipropyl-1,2-ethanediamine)₂]NO₃ [2.149 (2) and 2.152 (3) Å; Laskar *et al.*, 1998]. As indicated by the small O3–Ni–O4 bite angle of 61.0 (1)°, nitrate is sterically more compact than the β -diketonates, which have bite angles in the range 90.54 (8)–92.0 (2)° (Yoshida *et al.*, 1999). Such a compactness of the NO₃⁻ ligand results in noticeable deviations in the structural parameters of

Figure 1

A perspective view of the complex cation in (I). H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 40% probability level.

the nitrate complex from those of the β -diketonate complexes (Yoshida et al., 1999), as mentioned below.

While the Ni-N4 bond length in (I) [2.154(3) Å] is comparable to that of the corresponding β -diketonate complexes [2.144 (6)-2.170 (6) Å], the Ni-N5 bond [2.100 (3) Å] is much shorter than that of the β -diketonate complexes [2.168 (6)–2.171 (6) Å]. This seems to result from a reduction of the steric congestion around the Ni^{II} centre when NO_3^- is ligated instead of β -diketonate. The wider N5-Ni-O3 bond angle of 105.2 (1) $^{\circ}$ in (I) compared with the corresponding angles in the β -diketonate complexes [91.6 (2)– $93.5 (2)^{\circ}$ is indicative of such a reduction. The O1-Ni-O4 and O1-Ni-N5 angles of 99.3 (1) and 94.8 (1) $^{\circ}$ in (I) are also wider compared with those of the β -diketonate complexes [87.7 (2)-88.5 (1) and 87.0 (2)-88.8 (2)°, respectively]. Therefore, the reduction of steric congestion should also result in a shortening of the Ni-O1 bond length of the NIT2py coordination. Thus, while the Ni–N3 bond length of 2.134 (3) Å is almost the same as that of the β -diketonate complexes [2.123 (5)-2.144 (5) Å], the Ni-O1 bond length of 2.014 (2) Å is shorter than that of the β -diketonate complexes [2.052 (4)-2.056 (2) A]. The Ni-O1-N1 angle in (I) $[119.2 (2)^{\circ}]$ is almost the same as that in the β -diketonate complexes $[117.8 (2)-118.9 (3)^{\circ}]$, but the dihedral angle between the nitronyl nitroxide mean plane and the plane of the pyridyl ring of (I) $[32.7 (1)^{\circ}]$ is a little larger than the corresponding angle of the β -diketonate complexes (23.2– 28.7°).

There are no remarkable intermolecular contacts between the nitronyl nitroxide moieties, the shortest intermolecular distance between them being 4.267 (5) Å for $O2 \cdots N2^{i}$ [symmetry code: (i) 1 - x, 1 - y, 2 - z].

The temperature dependence of the magnetic susceptibility of compound (I) was analysed by a similar method to that used for the analysis of the β -diketonate complexes, and the best-fit parameters obtained are g = 2.24, J = -111.1 cm⁻¹ and $\theta =$

-0.649 K. Although the Ni-O(nitroxide) bond is shorter, as mentioned above, the magnetic interaction parameter is nearly equal to those found in the β -diketonate complexes, viz. -149.0 cm⁻¹ for the acac, -110.1 cm⁻¹ for the bzac and -99.8 cm^{-1} for the tfbzac complex (Yoshida *et al.*, 1999).

Experimental

A mixture of [Ni(NO₃)₂(tmen)] (0.47 mmol) and NIT2py (0.51 mmol) in CH₂Cl₂ (30 ml) was stirred at room temperature for 30 min and then evaporated to dryness under reduced pressure. The residue was dissolved in CH₃OH (50 ml) and solid KPF₆ (0.49 mmol) was added to the solution, giving a dark-green precipitate. The precipitate was filtered off and extracted with CH₂Cl₂. The extract was evaporated, again, to dryness, and the residue was recrystallized from CH₂Cl₂/Et₂O giving dark-green crystals of compound (I) (yield: 64%). Analysis found: C 32.62, H 4.80, N 12.04%; calculated for C₁₉H₃₄Cl₂F₆N₆NiO₅P: C 32.55, H 4.89, N 11.99%.

Crystal data

$[Ni(NO_3)(C_6H_{16}N_2)(C_{12}H_{16}-$	$D_x = 1.577 \text{ Mg m}^{-3}$
N_3O_2)]PF ₆ ·CH ₂ Cl ₂	Mo $K\alpha$ radiation
$M_r = 701.08$	Cell parameters from 25
Monoclinic, $P2_1/c$	reflections
a = 8.6307 (18) Å	$\theta = 14.7 - 15.0^{\circ}$
b = 26.690 (6) Å	$\mu = 0.97 \text{ mm}^{-1}$
c = 13.119(2) Å	T = 296 (2) K
$\beta = 102.305 \ (15)^{\circ}$	Prism, dark green
$V = 2952.6 (10) \text{ Å}^3$	$0.26 \times 0.22 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Rigaku AFC-7 <i>R</i> diffractometer
ω –2 θ scans
Absorption correction: by integra-
tion (Coppens et al., 1965)
$T_{\min} = 0.802, \ T_{\max} = 0.881$
9114 measured reflections
3605 independent reflections
3922 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0634P)^2]$
$wR(F^2) = 0.154$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.017$
8605 reflections	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
369 parameters	$\Delta \rho_{\rm min} = -0.62 \ {\rm e} \ {\rm \AA}^{-3}$

 $R_{\rm int} = 0.039$ $\theta_{\rm max} = 30.0^{\circ}$

 $h = 0 \rightarrow 12$

 $k = -37 \rightarrow 0$ $l = -18 \rightarrow 18$

3 standard reflections

every 150 reflections

intensity decay: 0.4%

Table 1

Selected geometric parameters (Å, °).

Ni-O1	2.014 (2)	O1-N1	1.296 (3)
Ni-O3	2.129 (2)	O2-N2	1.276 (4)
Ni-O4	2.125 (2)	O3-N6	1.283 (4)
Ni-N3	2.134 (3)	O4-N6	1.265 (4)
Ni-N4	2.154 (3)	O5-N6	1.211 (4)
Ni-N5	2.100 (3)		
O1-Ni-O3	159.76 (10)	N5-Ni-N4	84.97 (11)
O1-Ni-O4	99.29 (10)	N1-O1-Ni	119.20 (18)
O1-Ni-N3	87.55 (9)	N6-O3-Ni	91.28 (19)
O1-Ni-N5	94.79 (10)	N6-O4-Ni	92.0 (2)
O3-Ni-O4	60.96 (10)	O5-N6-O4	122.8 (4)
N3-Ni-N4	178.03 (11)	O5-N6-O3	121.5 (3)
N5-Ni-O3	105.19 (11)	O4-N6-O3	115.7 (3)
N1-C1-C8-N3	30.1 (5)	N4-C13-C14-N5	-57.5 (5)

H-atom parameters were constrained; C–H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *Rigaku/AFC Diffractometer Control Software* (Rigaku, 1985); cell refinement: *Rigaku/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP* (Johnson, 1970); software used to prepare material for publication: *SHELXL97*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1122). Services for accessing these data are described at the back of the journal.

References

- Caneschi, A., Gatteschi, D. & Rey, P. (1991). Prog. Inorg. Chem. 39, 311–429.Conge, A., Belorizky, E., Laugier, J. & Rey, P. (1994). Inorg. Chem. 33, 3364– 3369.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035– 1038.

- Fukuda, Y., Fujita, C., Miyamae, H., Nakagawa, H. & Sone, K. (1989). Bull. Chem. Soc. Jpn, 62, 745–752.
- Handa, M., Sayama, Y., Mikuriya, M., Nukada, R., Hiromitsu, I. & Kasuga, K. (1998). Bull. Chem. Soc. Jpn, 71, 119–125.
- Johnson, C. K. (1970). ORTEP. Report ORNL-3794, 2nd revision. Oak Ridge National Laboratory, Tennessee, USA.
- Laskar, I. R., Das, D., Chaudhuri, N. R., Mostafa, G. & Welch, A. J. (1998). Polyhedron, 17, 1363–1368.
- Luneau, D., Risoan, G., Rey, P., Grand, A., Caneschi, A., Gatteschi, D. & Laugier, J. (1993). *Inorg. Chem.* 32, 5615–5622.
- Molecular Structure Corporation & Rigaku (2000). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Oshio, H., Yaginuma, T. & Ito, T. (2000). Bull. Chem. Soc. Jpn, 73, 1365–1368.
- Rigaku (1985). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sutter, J.-P., Fettouhi, M., Li, L., Michaut, C., Ouahab, L. & Kahn, O. (1996). Angew. Chem. Int. Ed. Engl. 35, 2113–2116.
- Sutter, J.-P., Kahn, M. L., Golhen, S., Ouahab, L. & Kahn, O. (1998). Chem. Eur. J. 4, 571–576.
- Yoshida, T., Suzuki, T., Kanamori, K. & Kaizaki, S. (1999). Inorg. Chem. 38, 1059–1068.